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Ø Geo-neutrinos and their detection 
 
Ø Potential of Growing CdWO4 crystals at USD 
 
Ø Study of CdWO4 detectors at USD 
 
Ø Other Physics with CdWO4 detectors 
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What are Geoneutrinos? 

Image by: Colin Rose,  
Dorling Kindersley 

radioactive decay of 
uranium, thorium and 
from potassium-40 
produces antineutrinos 

assay the entire Earth by  
looking at its “neutrino glow” 

νe 

the antineutrinos produced by natural radioactivity in the Earth 

Geo-neutrinos and their detection 
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�  note: 40K also has 10.72% EC branch 
�  QEC=1.505 MeV 
�  10.67% to 1.461 MeV state (Eν = 44 keV) 
�  0.05% to g.s. (Eν = 1.5 MeV) 
�  thus also emits νe 

Uranium, Thorium and Potassium 

from G. Fiorentini 

0.0117% isotopic abundance 

Geo-neutrinos and their detection 
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How to Detect Geoneutrinos 
�  inverse beta decay: 

�  good cross section 
�  threshold 1.8 MeV 
�  liquid scintillator has a lot of protons and 

can easily detect sub-MeV events 
�  delayed coincidence signal 

�  τ = 0.2 ms, neutron capture on H 
�  detect delayed 2.2 MeV γ 
�  rejects backgrounds 

�  e+ and n correlated in time and in position in the 
detector 

nepe +→+ +ν
threshold 

figure from KamLAND Nature paper 

Geo-neutrinos and their detection 
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Important Questions in Geosciences 
�  what is the planetary K/U ratio? 

�  can’t address until we can detect 40K geoneutrinos 

�  radiogenic contribution to heat flow? 
�  geoneutrinos can measure this 

�  radiogenic elements in the core? 
�  in particular potassium! 

�  test fundamental models of Earth’s chemical origin 
�  test basic models of the composition of the crust 

material in subsequent slides from W.F. McDonough 

Geo-neutrinos and their detection 
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Important  Geoscience Questions 
�  test fundamental models of Earth’s chemical origin 

�  are measured fluxes consistent with predictions based upon the BSE? 
�  so far yes, KamLAND 2008 measurement central value equals the BSE 

predicted flux 

�  test basic ideas of the composition of the crust 
�  rock samples used to determine the composition of the crust 

�  depth variations not easily sampled 
�  are the basic ideas about the continents and how concentrations are 

enriched compared to the mantle correct? 
�  it suggests measurements at a continental site and one that probes the 

mantle would be very interesting 

Geo-neutrinos and their detection 



40K Decay 

�  89.28% Qβ=1.311 MeV 
�  10.72% QEC=1.505 MeV 

�  10.67% to 1.461 MeV state (Eν = 44 keV) 
�  0.05% to g.s. (Eν = 1.5 MeV)  

e

e

AreK
eCaK

ν

ν

+→+

++→
−

−

4040

4040

0.0117% isotopic abundance 
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40K Spectrum 

[figure from KamLAND Nature paper] 

threshold for nepe +→+ +ν
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Potassium Geo-neutrino Fluxes 
�  (5-15) × 106 cm−2 s−1 for the antineutrinos 
�  (5-15) × 105 cm−2 s−1 for the 44 keV νe 
�  (2-6) × 103 cm−2 s−1 for the 1.5 MeV νe 

�  compare to 1.44 MeV pep solar neutrinos 1.42 × 108 cm−2 s
−1  

 you can probably forget about the νe’s 
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106Cd for Potassium Geo-neutrinos 
�  isotopic abundance 1.25% 
�  0+→1+ allowed transition to the 106Ag g.s. 
�  Qβ = 194 keV, detectable e+ (1.02-1.12 MeV) 
�  followed by a t½=24 min EC decay (a big one) 

�  can consider direct detection of reaction 
�  could also consider radiochemical detection of Pd 
�  it’s a positron decay also! (not a tiny branch) 
�  “double-positron” signature potentially distinctive 
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Threshold for   
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€ 

νe+
106Cd→106Ag+ e+

Geo-neutrinos and their detection 



Cadmium Detectors 
�  CdWO4 scintillating crystals 
�  106Cd enrichment possible (Kiev 

group has enriched 116Cd for 
double beta decay search) 
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Geo-neutrinos and their detection 

In the next three slides, I will show  
the potential of growing CdWO4  
crystals at USD 



Success of detector- 
grade crystal growth  
with the reduction of  
spontaneous  
contamination by  
working quickly with 
standardized procedures  
in a clean small working  
area filled with hydrogen  
gas.  

Detector-Grade Germanium Crystal growth 

Refinement 
  

Fabrication challenges have 
included understanding growth 
mechanisms and microscopic 

References: 
1. D.-M. Mei et al., “Underground High-Purity Germanium Crystal Growth”，submitted to the Journal of Crystal growth.  
2. : G. Yang, et al., Radial and axial impurity distribution in high-purity germanium crystals, Journal of Growth (2012), doi:10.1016/j.jcrysgro.2011.12.042. 
3. G.-J. Wang et al., Development of large size high-purity germanium crystal growth, Accepted for publication by the Journal of Crystal Growth.  

Potential Impact  1.  Breeding ultra-high sensitivity 
detectors for underground experiments.  2.  Single-crystalline 
high-purity germanium crystals — are ideal for high sensitivity 
optoelectronic sensors and imaging system. 3. High-purity 
single crystals for electronic devices including transistors, 
diodes, fuel cells, sensors, etc. 4. High efficiency solar cells and 
solar panels.  

control of 
growth to 
achieve high 
quality  
crystals. 
Dash-
nicking 
Control of 
dislocation 

The removal of impurities contained in the 
starting materials has been done with a 
well-established zone refinement process.    

Mobility: >25,000 cm2/Vs 
Resistivity: >1000 Ω cm 
Impurity: < 2.5x1011/cm3  
Measured at 77 K 

Axial 
crystalline 

structure   

Characterization  
1. Determine the crystal  
orientation; 2. measure  
the dislocation density;   
3. identify the impurities  
and their sources;  

1 2 3

3 
3 

Dislocation density of  
3.3x103/cm2 

SURF 9/12/13 13 
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High-Purity Germanium Crystal Growth 

Large size crystals with a diameter of ~10 
cm  

SURF 9/12/13 15 
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CdWO4 and CsI crystals 
CdWO4 CsI(Tl) 

Density (g/cm3) 7.9 4.51 

Melting point (K) 1598 894 

Thermal expansion 
coefficient (C-1) 

10.2x10-6 0.54x 10-6 

Hygroscopic No Slightly 

Wavelength of emission 
max. (nm) 

475 550 

Lower wavelength cutoff 
(nm) 

330 320 

Refractive index @ 
emission max (nm) 

2.2-2.3 1.79 

Primary decay time  14 (μs) 1000 (ns) 

Light yield (photons/
keV-γ) 

12-15 54 

Study  of CdWO4 at USD 
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crystal source PMT 

γray 

Scintillation light 
Voltage 
Divider signal 

To ADC 
Electron cascade 

• Source emits γray 
•  Enters crystal where its is absorbed 
and reemitted as scintillation light 
• Light enters PMT where it ejects an 
electron via the photoelectric effect, 
and induces a cascade of electrons 
• The resulting signal is read out to the 
computer from an Analog-To-Digital 
Converter 

γray α Scintillation light α Signal Energy  

Study of CdWO4 at USD 
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Rise time calibration of CdWO4 crystal 

Rise Time: 14.933 µs 
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Flat top calibration of CdWO4 crystal 



R² = 0.99963 
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Peak v. Energy for CdWO4 crystal 
R² = 0.99803 
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• Peak v. Energy data inconclusive for 5mm 
CdWO4 crystal 
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CdWO4 Energy Resolution 
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• Energy Resolution data inconclusive for 5mm CdWO4 
crystal 



Co60 
 

22 

• 19mm 
• 1173.2 keV Peak: ~200 counts 
• 1332.5 keV Peak: ~150 counts 

• 9mm 
• 1173.2 keV Peak: ~100 
counts 
• 1332.5 keV Peak: ~70 
counts 

• 5mm 
• 1173.2 keV Peak: ~10 counts 
• 1332.5 keV Peak: ~5 counts 



Peak v. Energy and Energy Resolution 
for CsI (19mm) crystal 

R² = 0.9885 
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Comparing Peak v. Energy 
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CdWO4 is more linear than CsI, showing that this crystal is more 
predictable. 



Comparing Energy Resolution 
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CdWO4 has a greater energy resolution for sources with higher 
energies and CsI with lower energies as seen through their 

exponential shape. 



High Energy Results of Co60 

CdWO4 

CsI 
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Low Energy Results of Cd109 

CdWO4 

CsI X-ray at 22 
keV 
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Backgrounds from Double Beta? 
�  actual double beta decay of 106Cd produces both positrons at 

once 
�  antineutrino capture produces two positrons separated by 

t½=24 min 
�  how about accidental coincidences (24 min window) 

�  113Cd (12.2% isotopic abundance) β decay (Q = 320 keV) 
�  14.2 kHz (for 1 ton of 113Cd) 

�  116Cd (7.5% isotopic abundance) ββ decay (Q = 2.8 MeV) 
�  3.7 decays per second (for 1 ton of 116Cd) 

high isotopic purity of 106Cd is needed unless  
  you have positron identification 
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Other physics with CdWO4 detectors 



Geo-neutrino Signal Rates 106Cd 
�  Geo-neutrinos from 40K is ~106/cm2/s 
�  Inverse beta-decay cross section ~10-44 cm2 

�  Enrich 106Cd to 50% 
�  Detection efficiency of ~50% 

in the few to ~ten events per year per kiloton 
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Smaller volume but expensive project ~$500M-$1B  



Summary 
�  40K geo-neutrino detection using 106Cd 

�  106Cd could be made into scintillating crystals or 
semiconductor detectors 

�  distinctive “double-positron” signature 
 
�  USD can potentially grow crystals and make detectors 
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